Capacity of multiple-antenna systems with both receiver and transmitter channel state information
نویسندگان
چکیده
The capacity of multiple-antenna systems operating in Rayleigh flat fading is considered under the assumptions that channel state information (CSI) is available at both transmitter and receiver, and that the transmitter is subjected to an average power constraint. First, the capacity of such systems is derived for the special case of multiple transmit antennas and a single receive antenna. The optimal power-allocation scheme for such a system is shown to be a water-filling algorithm, and the corresponding capacity is seen to be the same as that of a system having multiple receive antennas (with a single transmitter antenna) whose outputs are combined via maximal ratio combining. A suboptimal adaptive transmission technique that transmits only over the antenna having the best channel is also proposed for this special case. It is shown that the capacity of such a system under the proposed suboptimal adaptive transmission scheme is the same as the capacity of a system having multiple receiver antennas (with a single transmitter antenna) combined via selection combining. Next, the capacity of a general system of multiple transmitter and receiver antennas is derived together with an equation that determines the cutoff value for such a system. The optimal power allocation scheme for such a multiple-antenna system is given by a matrix water-filling algorithm. In order to eliminate the need for cumbersome numerical techniques in solving the cutoff equation, approximate expressions for the cutoff transmission value are also provided. It is shown that, compared to the case in which there is only receiver CSI, large capacity gains are available with optimal power and rate adaptation schemes. The increased capacity is shown to come at the price of channel outage, and bounds are derived for this outage probability.
منابع مشابه
On The Secrecy of the Cognitive Interference Channel with Channel State
In this paper the secrecy problem in the cognitive state-dependent interference channel is considered. In this scenario we have a primary and a cognitive transmitter-receiver pairs. The cognitive transmitter has the message of the primary sender as side information. In addition, the state of the channel is known at the cognitive encoder. Hence, the cognitive encoder uses this side information t...
متن کاملبررسی تأثیر فاصلهی بین آنتنها در فرستنده و گیرنده بر روی ظرفیت کانال MIMO
In this paper, the spatial MIMO channel modeling (SCM) is introduced and the required parameters for this modeling are studied. Then, the MIMO channel gains and capacity are analyzed. The transmitter and receiver antenna patterns are also analyzed. Next, we are focused on the effects of the transmitter and receiver antenna arrays separations, the arrays length, and the angles spread on the ante...
متن کاملOn the Capacity of the Vector MAC and BC with Feedback
We determine the feedback capacity region of a two user Gaussian multiple access channel (MAC) with multiple antennas at the base station and a single antenna at each user. The vector MAC and broadcast channels (BC) with a single antenna at the base station and multiple antennas at each user are shown to be equivalent to scalar MACs and BCs, respectively. We also determine the capacity enhancem...
متن کاملFundamentals of Multi-User MIMO Communications
In recent years, the remarkable promise of multiple-antenna techniques has motivated an intense research activity devoted to characterizing the theoretical and practical issues associated with multiple-input multiple-output wireless channels. This activity was first focused primarily on single-user communications but more recently there has been extensive work on multi-user settings. The aim of...
متن کاملCapacity of MIMO Systems in Rayleigh Fading with Sub-Optimal Adaptive Transmission Schemes
Closed form expressions for the capacity of multiple antenna systems in the presence of Rayleigh flat fading is derived for two sub-optimal adaptive transmission schemes, namely channel inversion (CI) and truncated channel inversion (TCI), assuming channel state information (CSI) is available at both the transmitter and the receiver. Moreover, an upper bound for the capacity of a multiple-input...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Information Theory
دوره 49 شماره
صفحات -
تاریخ انتشار 2003